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Singularities associated with an incomplete space-time S are not uniquely defined 
until a boundary B is attached to it. [The resulting space-time-with-boundary, 
--- S LI B, will be termed a 'total' space-time (TST).] Since an incomplete space- 
time is compatible with a variety of boundaries, it follows that S does not represent 
a unique universe, but instead corresponds to a family of universes, one for 
each of its distinct TSTs. It is shown here that the boundary attached to the 
Reissner-Nordstr6m space-time for a point charge is invalid for qZ < m 2. When 
the correct boundary is used, the resulting TST is inextendible. This implies that 
the Graves-Brill black hole cannot be produced by gravitational collapse. The 
same is true of the KruskaI-Fronsdal black hole for the point mass, and for those 
black holes which reduce to the latter for special values of their parameters. 

1. I N T R O D U C T I O N  

As is well known (Tippler et al., 1980), the singularity structure of a 
causally incomplete, not necessarily maximal space-time S = (M, g) is not 
uniquely specified by (M, g) alone, but requires in addition that a boundary 
B be attached thereto (Hawking and Ellis, 1973). 2 [The resulting object, T 
- -  S LI B, will be termed a 'total' space-time (TST).] Since an incomplete 
space-time is compatible with a variety of boundaries (Geroch, 1968, p. 451), 
it follows that S by itself cannot represent a unique universe--instead, it 
corresponds to a family of universes, one for each of its topologically dis- 
tinct boundaries. 

Recognition of this fact immediately gives rise to the question: "Which 
of the possible boundaries of S should be attached to it?" The answer depends 
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on how much additional information is available--if  nothing more is known 
than (M, g) itself, then one is free to attach any of its mathematically admissible 
boundaries, the only remaining problem being the physical interpretation of 
the result. If, on the other hand, one also knows the universe U from which 
S was derived, or which the TST of S is intended to represent, then there is 
no freedom whatever to choose B-- the  boundary is uniquely determined by 
U, just as are such things as the symmetries of S, whether S is static, etc. In 
some cases this determination could be quite difficult, while in others it could 
be trivial. An example of the latter situation would be a U consisting of a 
single point source, for then the boundary of the TST of S is evidently a line 
through the location of the source. 

Incidentally, note that since a TST is a space-time-with-boundary, the 
criteria for equivalence and extendibility of TST are necessarily different from 
those applicable to space-times. Specifically, equivalence of TSTs requires not 
only that their S components be isometric (Sachs and Wu, 1977), 3 but also 
that their B components be homeomorphic. Likewise, extendibility of a TST 
requires not only extensibility of its S component, but also that its B component 
be preserved--i.e., that the image of B be homeomorphic to B itself. 

Admittedly, in most cases the only difference between the TSTs associ- 
ated with different choices of a boundary for a given S is the topology of 
the singularities, as is the case in the example in Hawking and Ellis (1973). 
However, when S is extendible, the choice of boundary to be attached to it 
may well affect the very existence of a singularity of the resulting TST. For 
example, consider the following two-dimensional, Riemannian case: (M, g) 
= (Dj, gE), where Di denotes the interior of the unit disk in R 2 (i.e., x 2 + 
y2 < 1), and gE denotes the Euclidean metric: dx 2 + dy 2. If the boundary is 
taken to be S ~, then there is no singularity at the boundary and the space 
possesses an extension to all of R 2, namely (R 2, gE)- On the other hand, if 
the boundary is taken to be a point (e.g., by identifying all the points of the 
circle x 2 + y2 = 1), then there is a quasiregular singularity at the boundary 
and no extension is possible. 

As is well known, the Reissner-Nordstr6m space-time SRN is timelike 
incomplete (Carter, 1963), so that by the argument in the first paragraph it 
cannot represent a unique universe. Moreover, examination of Nordstr6m's 
derivation shows that it involves a tacit assumption which is invalid for q2 
< m 2 and which attached a boundary to SaN that is incompatible with the 
point-charge universe from which SRN was derived. As a result, the RN TST 
does not represent a point charge for q2 < m 2, and afortiori, neither does 

3 As can be seen from p. 26 of this reference, equivalence also requires that the isometry be 
orientation- and time-orientation-preserving; hence any reference herein to an isometry will 
be understood to mean one having these properties. 
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its black-hole-containing extension (Graves and Brill, 1960). When the space- 
time for a point charge is correctly derived and the appropriate boundary is 
attached, the resulting TST is inextendible and devoid of a black hole. Since 
this TST is necessarily the limit of the space-time of any spherically symmet- 
ric, nonrotating, charged star that is collapsing to a point, it follows that such 
collapse cannot produce a black hole. 

Since there is no way of deriving the Graves-Brill  (GB) space-time 
from the set of postulates characterizing a point charge, nor of producing it 
by gravitational collapse, it follows that it has neither a theoretical nor a 
physical justification for its existence. Thus it, and the black hole which it 
contains, are simply artifacts of a historical error. The same is true of the 
point-mass black hole (Fronsdal, 1959; Kruskal, 1960), since it is based on 
Hilbert's space-time for a point mass, whose derivation (in 1917) involved 
the same erroneous assumption (Abrams, 1989) 4 as was used by Nordstrrm. 

The purpose of this paper is to derive the correct TST for a point charge 
and to show how the above-mentioned consequences come about. 

The plan of the paper is as follows: Section 2 is devoted to showing 
that Nordstrrm's (1918) derivation made use of an unjustified assumption, 
which among other things resulted in the attachment of a boundary that is 
incompatible with the point-charge universe when q2 < m 2. Section 3 lists 
the historical postulates on which Reissner's (1916) and Nordstrrm's deriva- 
tions were based. Section 4 contains a derivation of the point-charge space- 
time for q2 < m 2 which does not make use of Nordstrrm's assumption, and 
in the process proves that the assumption is invalid for the case in question. 
In addition, it also contains a proof that the historical postulates do not give 
rise to a unique space-time, but to a one-parameter family of inequivalent 
space-times, and thus that these postulates must be supplemented by one 
which determines the limiting value of a certain invariant as the point charge is 
approached. Section 5 discusses the physical significance of the supplemental 
hypothesis, and proposes a criterion for choosing among the infinitely many 
possible values of the invariant. In Section 6 the metric which results from 
this choice is obtained, and the associated TST is shown to be equivalent to 
that found by Pekeris (1982). Section 7 deals with the phenomenon of a 
nonspinning, spherically symmetric, charged star undergoing gravitational 
collapse to a point. It is shown that such collapse can never produce a GB 
black hole. Section 8 shows that because of the infinite red shift at the horizon 
of the GB space-time, there are in principle no phenomena explainable by a 
GB black hole that would not be equally well explained by Pekeris' TST, 

4In the referenced paper, I asserted (w that since Schwarzschild's and Hilbert's space-times 
had different singularity structures, it followed that the two space-times were inequivalent 
(cf. Sachs and Wu, 1977, w This is incorrect--as shown here, it is only their TSTs which 
are inequivalent. 
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so that the former is unnecessary from a phenomenological standpoint (and 
considerably more complicated than Pekeris' TST). Finally, the principal 
conclusions of the paper are summarized in Section 9, together with a 
brief discussion. 

2. HISTORICAL BACKGROUND 

The first attempt to determine the space-time of a point charge was that 
of Reissner (1916). However, his derivation was only valid for the case q2 
> m 2, where m denotes the particle's field-producing mass (i.e., that which 
produces Kepler-like orbits far from the point charge) and q denotes its charge 
(in relativistic esu). In addition, it contained an unknown constant [h(0 +) in 
Reissner's notation] whose value was tacitly assumed. 

A year or so later, a derivation applicable to all values of q2/m2 was 
presented by NordstrOm (1918). Taking the point charge to be at x = y = z 
-- 0, the starting point of his derivation was the static, spherically symmet- 
ric metric 

where 

and 

gs~s(rl0) ------ A ( r )  d t  2 - B ( r )  d r  2 - C ( r )  d f l  2 (i) 

r -- (x 2 + y2 + Z2)Ir2 (2) 

dl'~2 _-- dO 2 + d~b 2 sin20 (3) 

[The r I 0 in the argument of  gs,s signifies that in terms of r, the position 
of the point charge is described by r = 0. A similar notation will be used 
for subsequent metrics.] 

Substituting equation (1) into the variational equivalent of the Einstein- 
Maxwell field equations gave NordstrOm three ordinary differential equations 
(ODE) for the three unknown coefficients. Instead of solving these (which 
is done here in Appendix A), NordstrOm argued that one could always choose 
coordinates so as to make C --- r 2. But so doing actually requires that one 
introduce a new radial variable, r* say, via 

r *  = [ C ( r ) ]  112 (4) 

This transformation carries equation (1) into 

g ~ s ( r * l r * )  = A * ( r * )  d t  2 - B * ( r * )  d r  . 2  - r .2 dl'~ 2 (5) 

and, as follows directly from equation (4), assigns the value 
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r* = r~' --= [C(0+)]  1/2 (6) 

to the location of  the point charge. Setting C* = r .2 into the above-mentioned 
ODE, NordstrSm then solved for A* and B*, obtaining expressions for these 
quantities which contained but one constant of  integration, aN. This constant 
was readily shown to be equal to 2m, giving the results 

A*(r*) = AN(r*) = 1 -- 2m/r* + q2/r*2 (7) 

B*(r*) = BN(r* ) ~ 1~AN(r*) (8) 

However, the fact that C(r) is unknown at the stage where r* is introduced 
shows that the value of r* cannot be determined from equation (4). Moreover, 
the fact that r = 0 is the location of the point charge and thus a singularity 
of the field makes it impossible to appeal to 'elementary flatness' to conclude 
that C(0+)  = 0. Consequently, Nordstr6m's solution seemingly involves an 
unknown and unknowable constant, namely the r* coordinate of  the point 
charge. [This would appear, for example,  in the expression for the proper 
distance from the point charge to an event having r* = r*  namely 

rI~ dr* (9) d(r~) = [B*(r*)] In 

or in that for the proper volume from the point charge to r*, etc.] However, 
NordstrOm tacitly assumed that 5 r* = (x 2 + y2 + zZ)t~2, which implies that 
the location (x = y = z = 0) of  the point charge in terms of r* is given by 
r* = 0. But for q2 < m 2 ,  B~ tends to ~ as r* $ r* -= m + (m 2 - q2)112, SO 
for this case Nordstr~m's metric is only defined for r* > r*. Moreover, this 
assumption also results in the attachment of  a particular boundary to this 
space-time: a 2-sphere at r* = r* in the sections t = const. 

Although Nordstrtim only claimed that his space-time represented a 
point charge for q2 > m z, this was lost sight of  in the ensuing years, and S ~  
has come to be regarded as the space-time of  a point charge for all values 
of  qZ/m2. Following historical usage, the metric obtained from equation (5) 
by setting A* = AN, B* = BN, and assuming that r* = (x 2 + y2 + zZ)tn will 

Sin NordstrOm (1918). just under equation (5), he states, "...where e(r*) denotes the total 
charge in a sphere of radius r*." And just above equation (19a), he states, "Because of the 
spherical symmetry we have, of course for the components of U in the directions of the axes 
of coordinates in space 

U.~ = x.~ca/(r .3) 'r = 1, 2, 3" 

having previously defined U = ccd(r .2) in equation (19), [Note: r in NordstriSm's paper has 
been changed to r* here so as to conform to the notation adopted in the present paper.] Neither 
of these statements makes sense unless r* is regarded as (x z + y2 + z2)U2. 
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henceforth be termed the Reissner-Nordstr0m metric and will be denoted 
by gRN(r* 10): 

gRN(r* 10) = Ar~(r*) d t  2 - BN(r*)  d r  .2  - r .2 d ~  2 (10) 

Subsequent derivations of the point-charge metric were carded out by 
HOnl and Papapetrou (1939) and Pekeris (1982). In both cases the authors 
applied the technique used by Schwarzschild (1916) in his derivation of the 
point-mass metric, thereby avoiding NordstrOm's error; but in each case a d  

h o c  assumptions were used to evaluate one of the integration constants and 
thereby obtain a unique field. 

Analytic extensions of the RN space-time were subsequently obtained 
by Graves and Brill (1960) for q2 < m 2 and by Carter (1963) for q2 = m 2. 

Finally, the point of view adopted here is the generally accepted one 
that charge of either sign increases the field-producing mass, and that charge 
without matter is impossible; the first of these implies that q2 _< m 2, while 
the second reduces the latter to q2 < m 2. (This implies that point-charge 
space-times for which q2 _> m 2 are nonexistent, and thus so, too, is the Carter 
black hole.) This inequality is to be understood to hold in the following 
sections. 

3. THE HISTORICAL POSTULATES 

The postulates that until now have been regarded as characterizing the 
point-charge space-time Spc - (Mpc, gPc) may be gleaned from Reissner's 
paper. In vernacular terms, they require that: 

(i) Mpc consist of R 4 less a line through the point charge (------ M0). 

That gec be: 

(ii) Of Lorentz signature. 
(iii) Analytic. 
(iv) Static. 
(v) Spherically symmetric about the point charge. 
(vi) A solution of the Einstein-Maxwell field equations. 
(vii) Flat at spatial infinity (i.e., giy "-> "qq). 

And that: 

(viii) Sr,c be inextendible. 

4. THE EXTENT TO W H I C H  THE HISTORICAL POSTULATES 
DETERMINE THE METRIC 

Let K denote R 4 considered as the analytic manifold arising from the 
single-chart atlas (/P, Id), and (t, x, y, z) the natural coordinates (O'Neill, 
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1983, p. 1) thereon. Without loss of generality we shall take the charge to 
be located at x = y = z = 0. Let L denote the line x = y = z = 0, so that 
M0 = KV_,. 

As is well known (Eiesland, 1925), a metric satisfying (i i)-(v) every- 
where on M0 can always be expressed in the form 

gpc(X, y, z l0, 0, 0) = A(r)  dt  2 - F(r) (dx  2 + dy 2 + dz 2) 

where 

- G(r)(x  dx + y dy + z dz) 2 (11) 

an analytic function of r such that 

C(r) > 0 for r > 0 (18) 

C'(r)  > 0 for r > 0 (19) 

C/r  2 ---> 1 as r --> oo (20) 

r - (x 2 + y2 + Z2)1/2 (12) 

and A, F, G are analytic functions of r, satisfying 

A, F, G > 0 (13) 

so as to ensure compliance with (ii). 
Transforming to quasipolar coordinates related to x, y, z in the customary 

way, we find that equation (11) becomes (with a slight abuse of notation) 

gpc(rl0) = A(r)  dt  2 - B(r)  dr  2 - C(r)  d12 2 (14) 

while condition (13) becomes 

A, B, C > 0 (15) 

Substituting equation (14) into the Einste in--Maxwell  equations, solv- 
ing for A, B, and C, and imposing (vii) gives (see Appendix A) 

A(r)  = 1 - 2ndC t/2 + q2/C (16) 

B(r)  = C'21(4AC) (17) 

where the prime denotes differentiation with respect to r. These expressions 
coincide with those found by Stavroulakis (1981) for the exterior of  a static, 
spherically symmetric charged body when the cosmological constant in his 
result is set to zero, and with q = 0, to those obtained for the point mass in 
Oliver (1977) (this paper was the first in which the point-mass field equations 
were integrated without eliminating one of the unknowns). 

However, as shown in Appendix A, for a point charge, C must also be 
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All that is necessary in order to comply with the remaining historical 
postulates is to impose whatever further conditions are required to ensure 
that A is positive [it is also necessary that B be positive on Mo, but conditions 
(17)-(19) show that this is assured ifA > 0 for r > 0] and that (viii) is satisfied. 

As to the first of  these, Appendix B shows that A will be positive iff 

> rr -- m + (m 2 - q2)1 /2  (21) 

and since this must hold for all r > 0, it follows that 

b ----- [C(0+)] 1/2 -> r*+ > 0 (22) 

Since this condition is necessary to ensure the positivity of A, it follows 
that NordstrSm's assumption, which requires that b = O, is invalid. 

As to the second, the fact that the metric is analytic everywhere on Mo 
---/GL shows that (viii) will be satisfied only if L is singular. Now, Appendix 
C shows that the Kretschmann sca la r f  = Rijk~R ijkm tends to infinity as C 
0 and is bounded otherwise. In view of  equations (19) and (22), this means 
that there are no scalar curvature singularities on L. But as is well known, 
it is possible to have a singularity without any curvature-related scalar being 
unbounded [a so-called quasiregular singularity (Ellis and Schmidt, 1977, p. 
944)]. To explore this possibility, let us first observe that the boundary r = 
0 must be a point in each spatial section, so as to comply with the fact that 
the associated TST is intended to represent a universe consisting of  a single 
point source. Next, suppose that b -> r*, and consider the geodesic circle ~: 
t = to, 0 = at/2, r = e. Its proper circumference clearly tends to 2-rrb > 0 
[from equation (14)] as e $ 0, while its proper radius is easily seen to tend 
to zero, so that the ratio of  the former to the latter tends to oo. This shows 
that r = 0 is a singularity, since such behavior makes it impossible to map 
an infinitesimal neighborhood of  r = 0 into an interior portion of some larger 
space-time. (Note that the image of r = 0 under any such map must be a 
point in each spatial section, since otherwise the boundary attached to Mo 
would not be homeomorphic to its image in the map, as is required for 
extendibility of a TST.) Consequently, postulate (viii) is satisfied for any 
value of  b >- r*. [Despite appearances, the foregoing argument is coordinate 
independent, since equation (14) is unique up to transformations of  the form 
t = k~ + p, r = h(?), and neither of these alters the proper radius or proper 
circumference of 3'.] It is the presence of  this singularity which makes the 
TST inextendible. 

Moreover, just as in the case of the point mass (Abrams, 1989), so here, 
too, the value of C[P] at any event P is a scalar invariant of gpc(rl 0), and 
thus the same is true of  its limit (b 2) as P approaches the point charge. 
Consequently, space-times whose metrics are of  the form of  Svc with distinct 
values of b are inequivalent. Hence we conclude: 
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The historical postulates do not lead to a unique space-time, but to 
a one-parameter family of inextendible, inequivalent space-times. In 
order to obtain a unique field, it is necessary to supplement those 
postulates by one which fixes the value of  C(0+).  

5. T H E  S U P P L E M E N T A L  P O S T U L A T E  

We have seen in the previous section that in order to arrive at a unique 
field, it is necessary to supplement the historical postulates for the point 
charge by one which fixes the value of b = [C(0+)] t/2. Now, as shown in 
Appendix D, the limiting acceleration of a neutral test particle approaching 
the point charge on a radial geodesic of  equation (14), as measured by a 
sequence of  fixed observers, is given by 

Ibm - q21 Ibm - q21 

ao = bZx/b2 _ 2 b m  + q2 -~ b2x/(b _ m)2 + q2 _ m 2 (23) 

From this it is evident that fixing the limiting value of  the locally measured 
acceleration of a radially approaching neutral test particle is equivalent to 
fixing b. For the same reason as stated in connection with the point mass 
(Abrams, 1989), we shall take this limiting acceleration to be the same (oo) 
as in the Newtonian case, thereby supplementing the historical postulates 
with the following: 

(ix) The limiting value of the locally measured acceleration of a neutral 
test particle approaching the point charge on a radial geodesic is infinite. 

6. T H E  R E S U L T I N G  M E T R I C  

Clearly, the only value of b consistent with equation (22) which makes 
the RHS of equation (23) infinite is 

b = r* = m + ( m  2 - q2)1/2 (24) 

The simplest C satisfying the earlier requirements as well as equation 
(24) is given by 

Cp = (r + r*) z (25) 

which reduces equations (16) and (17) to 

Ap(r) = 1 - 2m/ ( r  + r*) + q2/(r + r*) 2 (26) 

Bp(r) = [Ap(r)]-~ (27) 

respectively. It is readily verified via the transformation r + r* = [?3 + 
(r.)3] 1/3 that the resulting space-time is isometric to that of Pekeris, and since 
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the boundary attached to the latter is likewise pointlike in any spatial section, 
the two TSTs are equivalent. Moreover, since Nordstrtim's and the just- 
derived version of Pekeris' space-times are isometric via the transformation 
r* = r + ~ ,  it follows that the actual location of the point charge in terms 
of r* is given by r* = ~ ,  so that the 2-sphere boundary resulting from 
Nordstrtim's assumption coincides with the position of the point charge, 
which is clearly incompatible with the pointlike nature of the source. 

7. GRAVITATIONAL COLLAPSE 

Eiesland (1925) showed that any spherically symmetric solution of the 
Einstein-Maxwell field equations is static. In particular, then, this last must be 
true of the 'exterior' metric of a charged, nonrotating, nonradiating spherically 
symmetric object ('star') undergoing gravitational collapse. Consequently, 
this metric must satisfy the same postulates as that for the point charge, with 
the exception of those relating to the vicinity of the charge, namely (viii) 
and (ix). As can be seen from Appendix A, satisfaction of postulates (ii)-(vii) 
when applied to a metric of the form of equation (14) entails that A and B 
be given by equations (16) and (17), respectively, and together with condition 
(15), that C be a positive, analytic, strictly monotonic increasing function of 
r over the r range for which the exterior metric is valid--i.e., for r > rb(t), 
where rb(t) denotes the r coordinate of the star's boundary at time t. 

Since the set of C's which, together with equations (16) and (17), give 
rise to a metric satisfying (ii)-(vii) for r > r b may obviously be larger than 
that satisfying (ii)-(ix) for r > 0, it cannot be asserted that the exterior metric 
is the 'same' as that of the point charge (in the sense of having the same 
values of C at the same proper distances from the center of symmetry). 
However, if the star is sufficiently massive as to collapse to a point, then as 
it does so, the difference between the actual exterior metric and the metric 
of the point charge must vanish as r $ 0. Consequently, in that limit the 
exterior metric becomes that of the point charge. Since the point-charge 
space-time whose metric was obtained in the previous section has no event 
horizon, it follows that a GB black hole cannot be formed during the collapse 
of a charged star. Thus, the correction of Nordstr/Sm's error not only eliminates 
the point charge as a possible source of such black holes, but simultaneously 
deprives the latter of the only mechanism that has been proposed for their 
production. 

8. THE GB BLACK HOLE IS UNNECESSARY 

Just as is the case for the point mass, so here, too, there is an infinite 
red shift in the GB space-time as r* $ r*. Because of this, all that an outside 
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observer can ever know of phenomena involving the GB black hole must 
arise from information originating outside the hole--i .e . ,  from the RN space- 
time. But the latter is diffeomorphic to that of  Pekeris-- that  is to say, every- 
thing that takes place outside the hole would occur in the identical fashion 
if the GB space-time were replaced by Pekeris'; it is impossible to determine 
which space-time is "really" present without going to the boundary. Thus, 
any observations that could be explained by postulating the presence of a 
GB black hole would be equally well explained by postulating the existence 
of a Pekeris 'point' charge at the boundary of the black hole. Consequently, 
there is no need to invoke a GB black hole to explain any set of observations. 
Pekeris' black 'point' will do an equally effective job, and its topology is 
far simpler. 

9. C O N C L U S I O N S  

1. Nordstrrm's assumption [that the radial coordinate in his metric is 
related to x, y, z via r* = (x 2 + y2 + z2)U2] is not only invalid, but also leads 
to the attachment of  a boundary to his space-time that is incompatible with 
the pointlike nature of  the source. 

2. The historical postulates restrict the manifestly static and spherically 
symmetric form of the point-charge metric to equation (14) cum equations 
(16)-(20), where (with b ------ [C(0+)] u2) 

b - - r *  = r n +  (m 2-q2)1/2  

Thus, those postulates give rise to a one-parameter family of inequivalent 
space-times; to obtain a unique field, they must be supplemented by one 
which fixes the value of  b. Since the minimum value of  b is necessarily ->r$+ 
> 0 in order to ensure the Lorentz signature of the metric, it follows that 
however this supplemental postulate is chosen, Nordstr0m's assumption, 
which requires that b = 0, is invalid. 

3. The limi.ting value ao of  the locally measured acceleration of a neutral 
test particle approaching the point charge on a radial geodesic fixes b. The 
supplemental postulate therefore requires a choice of  ao, which on the basis 
of the Newtonian analogy is here taken to be infinite. 

4. The point-charge metric resulting from this choice is 

gp = [1 - 2ml(r + r*+) + q21(r + r*) 2] dt z - [1 - 2ml(r + r*) 

+ q2/(r + r+*)2] -I dr 2 - (r + r+*) 2 d~-~ 2 for r > 0 

whose associated TST is equivalent to Pekeris'. 
5. The 'exterior' metric for a charged, spherically symmetric star under- 

going gravitational collapse is of the same form as that for a point charge, 
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and as the collapse proceeds must approach gr, Thus no black hole can be 
formed by such collapse. 

6. Any observations that would be consistent with the existence of a 
GB black hole would be equally consistent with a Pekeris black 'point' and 
thus GB black holes are unnecessary to explain any phenomena. 

7. Possessing neither a theoretical justification (i.e., a mathematical chain 
f r o m  a set of postulates characterizing a particular universe to  the GB black 
hole) nor a mechanism for its production, the GB black hole is nothing more 
than an artifact of a historical error. 

8. Conclusion 7 applies equally well to the Kruskal-Fronsdal black 
hole, since setting q = 0 in NordstrOm's TST reduces it to that erroneously 
derived by Hilbert for the point mass (Abrams, 1989) and reduces the GB 
space-time to that obtained by Kruskal (1960) and Fronsdal (1959). It also 
applies (Abrams, 1996) to the black hole found by Lake and Roeder (1977) 
for the point mass when A :g 0. 

It should be noted that what has been termed Pekeris' black 'point' does 
not have all the properties of a point in Euclidean 3-space--in particular, 
although the proper radius andproper volume of a sphere about r = 0 passing 
through r = r go to zero as r 4, 0, the proper circumference and proper area 
of the sphere approach nonzero values. Were it to have a l l  t he  properties of 
an ordinary point, of course, it would not be a singularity of the TST, as is 
required of a point source. 

For q = 0, the TST obtained here was also found by Janis e t  al.  (1968), 
on the basis of entirely different considerations. 

APPENDIX A. THE MOST G E N E R A L  SOLUTION SATISFYING 
THE H I S T O R I C A L  POSTULATES 

Making the obvious modifications in the equations [Tolman (1934), p. 
259, equation (102.6)] satisfied by the electromagnetic field tensor Fij in 
empty space, necessitated by the use of C rather than r 2 in equation (1), we 
find as usual that all F ij vanish except for F 4~ = - F  14, and that the former 
satisfies (a prime denotes differentiation with respect to r) 

F 41' -)- [ l n ( C , ~ ) ] '  = 0 (AI) 

whence 

dp ' = - A B F  41 = - K , ~ [ C  (A2) 

where ~b denotes the 'time' component of the generalized potential and K is 
an integration constant. Substituting these results into the expression [Tolman 
(1934), p. 261, equation (104.1)] for Maxwell's energy-momentum tensor, 
we obtain 
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T[ = - T  2 = - T  ] = T~ = K21(2C 2) (A3) 

whence the nonvanishing and independent field equations read (cf. 
Abrams, 1989) 

-8"rrTl  = - 1 / C  + C '2 / (4BC 2) + A ' C ' / ( 2 A B C )  = - f E  (A4) 

-8" t rT  2 = C"/ (2BC)  + A" / (2AB)  - C '2 / (4BC 2) 

- B'C ' / (4BEC)  - A '2/(4A2B) - A ' B ' / ( 4 A B  2) 

+ A ' C ' / ( 4 A B C )  = fE (A5) 

- 8 a x T  4 = C"/ (BC)  - l / C  - B ' C ' / ( 2 B 2 C )  - C '2 / (4BC 2) 

= --fE (A6) 

where 

fE = 4"trK2/C2 (A7) 

Subtracting equation (A6) from equation (A4) leads, as in the uncharged 
case, to 

C '2 = J A B C  (A8) 

where J is an integration constant. Substituting this into equation (A4) gives 

A ' + 2 - C  A =  - -  7 (A9) 

which integrates at once to 

A = 4 / J  - o d x / ~  + 167rKE/(jC) (Al0) 

with ct being the constant of integration. Finally, using equation (AS) to 
eliminate B from equation (A5) and eliminating A from the result via equation 
(A 10) shows, after some algebra, that equation (A4) is satisfied identically. 
Thus, equations (AS) and (Al0) constitute the general solution of equa- 
tions (A4)-(AT)~ 

Now, application of postulate (vii) to equation (Al) shows that C must 
behave like r 2 as r --~ oo. Hence, from equation (AI0), A --~ 4 /J  as r --~ oo, 

and thus, by (vii) again, J = 4. Moreover, substituting equation (A8) into 
the RHS of equation (A2) and letting r ~ m gives 

d~' ~ - K / r  2 as r --~ oo (Al l )  

whence 

K = q/(4"rr) In (A12) 

where q denotes the charge on the particle in relativistic esu (c -- G = I). 
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Collecting these results, we have 

A = 1 - 2 m l x / ~  + q2/C (AI3) 

B - -  C'2/(4AC) (Al4) 

where ct has been identified with twice the charge's field-producing mass by 
comparison with the Newtonian potential for large r. From equations (A14) 
and (A4) we see that C' cannot be zero for r > 0, so that it must always be 
positive or always be negative. Of these two possibilities the latter is ruled 
out by the requirement that C ~ r 2 for large r. Consequently we conclude: 

�9 C is any positive, analytic, strictly monotonic increasing function of 
r that behaves like r E as r --> oo. 

The only other constraints on C that are a consequence of the historical 
postulates are those induced by the necessity of satisfying equation (15) and 
(viii). These matters are dealt with in Appendix B. 

APPENDIX B. ADDITIONAL CONSTRAINTS ON C DUE TO 
THE H I S T O R I C A L  POSTULATES 

As shown in Appendix A, C must be positive and strictly monotonic- 
increasing. Hence by equation (A14), B will be positive iff A is. Thus the 
satisfaction of condition (15) requires only that C be chosen so as to make 
A > 0. Rewriting equation (A13) in the form 

A = (x/~ - m ) 2  + q2  _ m 2 
C (BI) 

we see that in order to make the numerator of equation (BI) positive and 
thus comply with condition (15), it is necessary that either 

v/C > m + ( m  2 - q2)1/2 _~_ r~+ (B2) 

o r  

v/C < m - ( m  2 - q2)1/2 ~ r~_ (B3) 

But, since it was shown in Appendix A that C must behave like r 2 as r --> 
o% it follows that C cannot satisfy equation (B3) for all r > 0. Consequently, 
the satisfaction of (15) imposes the additional requirement of inequality (B2) 
on C. Finally, inspection of equation (B l) shows that for C constrained by 
inequality (B2), the Kretschmann s c a l a r f - -  RijkmR ij~ is well behaved as r 
---> 0, and thus (since the spherical symmetry ensures that all other scalars 
are necessarily functions o f f )  there is no curvature-related singularity there. 
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A P P E N D I X  C. EVALUATION O F  f 

The nonvanishing components of  Rijkm for equations (1)-(3) are readily 
found to be 

R1212 = (2BCC" - B' CC' - BC'2)/(4BC) (C1) 

R1313 : R1212 sinE0 (C2) 

Ri414 = (BA'  + A A ' B '  - 2ABA")/(4AB) (C3) 

R2323 = (C '2 - 4BC) sin20/(4B) (C4) 

R2424 = - A ' C ' / ( 4 B )  (C5) 

R3434 : R2424 sin20 (C6) 

together with their counterparts obtained by interchange of  the indices in the 
first pair or the second pair. 

The corresponding values of the R 'jkm are 

R 1212 = RI212[(B2C 2) (C7) 

R 1313 = R~313/(B2C -~ sin40) (C8) 

R 1414 = RI414](A2B 2) (C9) 

R 232a = R2323/(C 4 sin40) (C 10) 

R 2424 = RE424](A2C 2) (C 1 1) 

R 3434 : R3434](A2C 2 sin40) (C12) 

and their associated counterparts. 
Taking account of  the multiplicity of terms obtainable by interchanging 

indices, it readily follows that 

f =  4(RI212R t212 + RI313 R1313 + RI414 RI414 

d- R2323 R2323 q- R2424 R2424 + R3434 R3434) 

where 

= A  + f2 + + f ,  

f~ -= 216" - B'C' I (2B)  - C'21(2C)]21(B2C 2) 

f2 --- [A'2/(2A) + A'B ' I (2B)  - A"]21(A2B 2) 

f3 -- 4[C'21(4B) - C] 21C4 

f4 -- A'2C'21(2A2B2C2) 

Elimination of  B via equation (AI4) reduces these to 

(C13) 

(C14) 

(Cl5) 

(C16) 

(C17) 

(Cl8) 
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f l  = 8 A ' 2 / C ' 2  

f2 = 16A'2C2[ A ' / A '  - C"/C'  q- C ' / (2C)]Z/C '4 

f3 = 4(A - 1)2/C 2 

f4=f~ 
Finally, elimination of A via equation (Al3) gives 

f l  = f4 :- 8( m]C3/2 -- q2/C2) 2 

f2 = 4(3q 2/C2 - 2m/C3/2) 2 

f3 = 4 (q  2/C - 2m/x/---C) 2/C2 

which upon substitution into equation (C14) give 

f = 816(mv/-~ _ q2)2 + q4]/C4 

(Cl9) 

(C20) 

(C21) 

(C22) 

(C23) 

(C24) 

(C25) 

(C26) 

APPENDIX D. EVALUATION OF ao 

As shown in Doughty (1981), the acceleration of a neutral test particle 
relative to a fixed observer in a universe whose metric can be written in the 
form of equation (14) is given by 

x/~--grr(--g rr) Igtt,rl IA'I 
a = 2g,t 2 A x / ~  (Dl) 

Using equation (Al3) to obtain A' and equation (Al4) to eliminate B, this 
gives 

I m,4/-C - q2 I 
c vw-AC (D2) 

a - 

As r --> 0, this approaches 

I b m  - q21 (D3) 
ao b2x/b 2 - 2 b m  + q2 
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